Material Densification
Technical Publication

Hot Isostatic Pressing for Fatigue Critical Additively Manufactured Ti-6Al-4V

This study investigates how hot isostatic pressing (HIP) affects fatigue performance in additively manufactured (AM) Ti-6Al-4V. By varying initial material states through different AM systems and process parameters, limitations of HIP are explored. Results show that fatigue performance depends on the as-built quality of the material. Differences in material attributes like defects or microstructure don’t fully explain performance variations, suggesting other factors may be at play. Additionally, exploring HIP parameters beyond ASTM recommendations reveals improved fatigue performance with reduced temperature and high-pressure treatments.

Share:

Related content

White paper

Sustainable production potential of aero engine components in alloy 718 with Flexform™

White paper

Transforming heavy manufacturing with large-scale PM-HIP

PM-AM cylinder demo part
Customer Stories

Paragon Medical elevates their medical device AM manufacturing with Quintus® Care and Quintus Purus®

Isostatic pression solutions for scalable, cost-effective solid-state battery (SSB) production
White paper

Throughput and cost analysis of solid-state battery production

Brochure

QIH 200 URC® – the largest HIP with full HPHT™ capability

White paper

Benefits of using HIP for additively manufactured thin-walled, high-performance heat exchangers